凯时kb88账号注册

设为首页 | 加入收藏 | 联系我们
咨询热线:13856234120

产品展示

当前位置: > 凯时登陆首页 >

「技术文章」精密ADC 用滤波器设计的 实际挑战和考虑

「技术文章」精密ADC 用滤波器设计的 实际挑战和考虑
  • 产品名称:「技术文章」精密ADC 用滤波器设计的 实际挑战和考虑
  • 产品简介:精密模数转换器应用广泛,如仪器仪表和测量、电力线继电保 护、过程控制、电机控制等。目前,SAR 型ADC 的分辨率可 达18 位甚至更高,采样速率为数MSPS;- 型ADC 的分辨 率则达到24 位甚至32 位,采样速率为数百kSPS。为了充分 利用高性能ADC 而不限制其能力

产品介绍:

  精密模数转换器应用广泛,如仪器仪表和测量、电力线继电保 护、过程控制、电机控制等。目前,SAR 型ADC 的分辨率可 达18 位甚至更高,采样速率为数MSPS;Σ-Δ 型ADC 的分辨 率则达到24 位甚至32 位,采样速率为数百kSPS。为了充分 利用高性能ADC 而不限制其能力,用户在降低信号链噪声方 面(例如实现滤波器)面临的困难越来越多。

  本文讨论在ADC 信号链中实现模拟和数字滤波器以便达到最 佳性能所涉及到的设计挑战和考虑。如图1 所示,数据采集信 号链可以使用模拟或数字滤波技术,或两者的结合。精密SAR 型和Σ-Δ 型ADC 一般在第一奈奎斯特区进行采样,因此,本 文将着重讨论低通滤波器。本文的意图不是讨论低通滤波器的 具体设计技术,而是讨论其在ADC 电路中的应用。

  理想低通滤波器应当具有很陡的过渡带,其通带应具有出色的 增益平坦度,如图2 中的砖墙虚线所示。此外,阻带衰减应将 任何残余带外信号降低至0。某些常用实际滤波器的响应如图2 中的彩色线条所示。如果通带增益不平坦或有纹波,这种响应 可能会影响基频信号。阻带衰减不是无限的,会限制对带外噪 声的筛选。过渡带也可能没有陡峭的滚降,导致对截止频率周 围的噪声衰减不佳。另外,所有非理想滤波器都会引入相位延 迟或群延迟。

  模拟低通滤波器可以在ADC 转换之前消除信号路径中的高频 噪声和干扰,帮助避免混叠噪声污染信号。它还能消除滤波器 带宽之外的过驱信号的影响,避免调制器饱和。发生输入过压 时,模拟滤波器还能限制输入电流,衰减输入电压。因此,它 能保护ADC 输入电路。叠加于接近满量程信号上的噪声尖峰 可能会让ADC 的模拟调制器饱和,必须利用模拟滤波器将其 衰减。

  由于数字滤波发生在转换之后,因而可以移除转换过程中注入 的噪声。在实际应用中,采样速率远高于奈奎斯特理论指出的 两倍基频信号频率。因此,后置数字滤波器可以利用针对更高 信噪比和更高分辨率的滤波技术来降低转换过程中注入的噪 声,例如:信号带宽之外的输入噪声凯时登陆首页、电源噪声、基准源噪声、 数字接口馈通噪声、ADC 芯片热噪声或量化噪声。

  抗混叠滤波器放在ADC 之前,因此这些滤波器必须为模拟滤 波器。理想抗混叠滤波器具有如下特性:通带内具有单位增益, 无增益变化,混叠衰减水平与所用数据转换系统的理论动态范 围一致。

  根据架构不同,ADC 会有不同的输入电阻,这会影响输入滤 波器设计。以下考虑关系到ADC 模拟输入滤波器的设计。

  算出的RC 滤波器是一个低通滤波器,截止带宽为3.11 MHz。 但是,某些设计人员可能会意识到,3.11 MHz 远大于100 kHz 的输入信号频率,因此,该滤波器无法有效降低带外噪声。为 实现更高动态范围,可以换用590 Ω 电阻,以获得100 kHz 的 –3 dB 带宽。这种方法主要有两个问题。由于通带中会有更多 衰减,对于AD7980 ADC 示例,100 kHz 附近的幅度衰减最高 可达30%,因此,信号链精度会大大降低。带宽越小,则建立 时间越长,这使得AD7980 的内部采样保持电容无法在指定的 采集时间内完成充电,因而无法执行下一次有效转换。这导致 ADC 转换精度降低。

  设计人员应当确保ADC 之前的RC 滤波器能在目标采集时间内 完全建立。这对需要较大输入电流或具有等效的较小输入阻抗 的精密ADC 来说异常重要。某些Σ-Δ 型ADC 在无缓冲输入模 式下对输入RC 值的要求最高数字用户线滤波器。可以将具有较大电阻或电容的超 窄低通滤波器放在一般具有较大输入阻抗的输入放大器之前。 或者可以选择具有极高输入阻抗的ADC,例如ADAS3022其 输入阻抗为500 MΩ。

  在通道间切换时,多路复用输入信号通常含有较大的阶跃。最 差情况下,一个通道处于负满量程,而下一个通道则处于正满 量程(见图4)。这种情况下,当多路复用器切换通道时,输入 阶跃大小将是ADC 的满量程。

  对于这些通道,可以在多路复用器之后使用一个单通道滤波 器,使得设计更简单,成本更低。如上所述,模拟滤波器必定 会引入建立时间。每次多路复用器在通道间切换时,该单通道 滤波器都必须充电到所选通道的值,因而会限制吞吐速率。为 提高吞吐速率,可以在多路复用器之前为每个通道添加一个滤 波器,但这样做会提高成本。

  遭遇高噪声的应用,尤其是在接近第一奈奎斯特区边缘处发生 很高干扰的应用,需要滚降厉害的滤波器。然而,人们已从实际模拟低通滤波器得知:从低频到高频,幅 度会滚下来,并有一个过渡带。增加滤波器级数或阶数可以改 善带内信号的平坦度,并使过渡带收窄。然而,这些滤波器的 设计很复杂,因为它们对增益匹配非常敏感,以至于无法实现 数阶的衰减幅度。此外,在信号链中增加任何元件(如电阻或 放大器)都会引入带内噪声。

  对于某些具体应用,模拟滤波器设计的复杂度和性能需要进行 取舍。例如,在采用AD7606的电力线继电器保护应用中,对 于50 Hz/60 Hz 基频输入信号及其相关前五次谐波,保护通道 的精度要求低于测量通道。保护通道可以使用一个一阶RC 滤 波器凯时登陆首页,而测量通道使用二阶RC 滤波器,以便提供更好的带内 平坦度和更急剧的滚落过渡。

  滤波器设计不仅仅关系到频率设计,用户可能还需要考虑模拟 滤波器的时域特性和相位响应。在某些实时应用中,相位延迟 可能非常重要。如果相位随输入频率而变化,那么相位变动将 更糟糕。滤波器的相位变化一般用群延迟来衡量。对于非常数 群延迟,信号会在时间中扩散,导致脉冲响应变得很差。

  对于多通道同步采样应用,例如电机控制或电力线监控中的相 电流测量,还应考虑相位延迟匹配误差。确保滤波器在多个通 道上引起的额外相位延迟匹配误差可以忽略不计,或者在工作 温度范围的信号链误差预算范围内。

  对于低谐波失真和低噪声应用凯时登陆首页,用户必须为信号链设计选择合 乎要求的元件。模拟电子元件不是完全线性的,会引起谐波失 真凯时登陆首页。Walsh 的文章中讨论了如何选择低失真放大器和如何计算 放大器噪声。放大器等有源元件需要低THD + N,同时也要考 虑普通电阻和电容等无源元件的失真和噪声。

  电阻的非线性有两个来源:电压系数和功率系数。根据具体应 用,高性能信号链可能需要使用由特定技术制造的电阻,如薄 膜或金属电阻。如果选择不当,输入滤波电容可能会造成显著 失真。如果成本预算允许,聚苯乙烯和NP0/C0G 陶瓷电容是 很好的备选元件,可以改善THD。

  除放大器噪声外,电阻和电容也会有电子噪声,后者是由处于 均衡态的电导体内部的电荷载子的热扰动产生的。RC 电路的 热噪声有一个简单的表达式,电阻R 是满足滤波要求所需要 的,同时R 越高,相应的热噪声也越大。RC 电路的噪声带宽 为1/(4RC)。

  除放大器噪声外,电阻和电容也会有电子噪声,后者是由处于 均衡态的电导体内部的电荷载子的热扰动产生的。RC 电路的 热噪声有一个简单的表达式,电阻R 是满足滤波要求所需要 的,同时R 越高,相应的热噪声也越大。RC 电路的噪声带宽 为1/(4RC)。

  了解前面的设计考虑之后,便可利用ADI 公司的模拟滤波器向导设计有源模拟滤波器。它会根据应用要求计算电容和电阻值,并选择合适的放大器。

  SAR 型和Σ-Δ 型ADC 正在稳步实现更高的采样速率和输入带 宽。以两倍奈奎斯特速率对一个信号过采样,会将ADC 量化 噪声能量均匀扩散到两倍频段中。这样便很容易设计数字滤波 器来限制数字化信号的频带,然后通过抽取来提供所需的最终 采样速率。这种技术可降低带内量化误差并提高ADC SNR。 它还能放宽滤波器滚降要求,从而减轻抗混叠滤波器的压力。 过采样降低了对滤波器的要求限幅放大器,但需要更高采样速率ADC 和 更快的数字处理。

  还有很多其他因素会将噪声引入ADC 转换代码中。例如:信 号源和信号链器件的噪声,芯片热噪声,散粒噪声,电源噪声, 基准电压噪声,数字馈通噪声,以及采样时钟抖动引起的相位 噪声。这种噪声可能会均匀分布在信号频段中,表现为闪烁噪 声。因此,实际实现的ADC SNR 改善幅度一般低于用公式计 算出的值。

  在应用笔记AN-1279 中,256×过采样下18 位AD7960 ADC 的 实测动态范围为123 dB。这是用于高性能数据采集信号链,如 光谱分析、磁共振成像 (MRI)、气相色谱分析、振动、石油/ 天然气勘探和地震系统等。

  如图8 所示,与理论SNR 改善幅度计算相比,测得的过采样 动态范围低1 dB 至2 dB。原因是来自信号链器件的低频噪声 限制了总体动态范围性能。

  数字滤波器通常位于FPGA、DSP 或处理器中。为了减少系统 设计工作,ADI 公司提供了一些集成后置数字滤波器的精密 ADC。例如,AD7606 集成了一个一阶后置数字sinc 滤波器用 于过采样。它很容易配置,只需上拉或下拉OS 引脚。Σ-Δ 型 ADC AD7175-x 不仅有传统sinc3 滤波器,还有sinc5 + sinc1 和增强型50 Hz/60 Hz 抑制滤波器。AD7124-x 提供快速建立模 式(sinc4 + sinc1 或sinc3 + sinc1 滤波器)功能。

  延迟是数字滤波器的一个缺点,它取决于数字滤波器阶数和主 时钟速率移动站。对于实时应用和环路响应时间,应当限制延迟。数 据手册所列的输出数据速率是指在单一通道上执行连续转换 时转换结果有效的速率。当用户切换到另一通道时,建立Σ-Δ 调制器和数字滤波器还额外需要些时间密封灯头。与这些转换器相关的 建立时间是指通道变更之后输出数据反映输入电压所需的时 间。通道变更之后,为精确反映模拟输入,必须清除数字滤波 器中与前一模拟输入相关的全部数据。

  以前,Σ-Δ 型ADC 的通道切换速度比数据输出速率要小得多。 因此,在多路复用数据采集系统等切换应用中,必须明白:获 得转换结果的速率要比对单一通道连续采样时可达到的转换 速率低好几倍。

  ADI 公司的某些新型Σ-Δ ADC(如AD7175-x)内置优化的数字 滤波器,可减少通道切换时的建立时间。AD7175-x 的sinc5 + sinc1 滤波器主要用于多路复用应用,在10 kSPS 和更低的输出 数据速率时,可实现单周期建立。

  很多文章都讨论过,过采样频率越高,模拟滤波器设计就越容 易。当采样速率高于满足奈奎斯特准则所需的速率时,便可使 用较简单的模拟滤波器来避免受到极高频率所产生的混叠影 响。很难设计一个能够衰减所需频段而不失真的模拟滤波器, 但很容易设计一个利用过采样抑制较高频率的模拟滤波器。这 样便很容易设计数字滤波器来限制转换信号的频带,然后通过 抽取来提供所需的最终采样速率,但又不会丧失所需信息。

  实施抽取之前,需要确保这种重新采样不会引入新的混叠问 题。抽取之后,确保输入信号符合奈奎斯特关于采样速率的 理论。

  EVAL-AD7606/EVAL-AD7607/EVAL-AD7608EDZ 评估板可以每 通道200 kSPS 的速率运行。在下面的测试中,配置其采样速率为 6.25 kSPS,过采样比为32。然后,将一个3.5 kHz –6 dBFS 正弦 波施加于AD7606。图9 显示2.75 kHz (6.25 kHz – 3.5 kHz) 处有 一个–10 dBFS 混叠镜像。因此,若ADC 之前没有合格的抗混叠 模拟滤波器,当使用过采样时,数字滤波器就可能会因为抽取而 引起混叠镜像。应使用模拟抗混叠滤波器来消除这种叠加于模拟 信号上的噪声尖峰。

  本文讨论的挑战和考虑可帮助设计人员设计出实用的滤波器 以实现精密采集系统的目标。模拟滤波器必须在不违反系统误 差预算的条件下与SAR 型或Σ-Δ 型ADC 的非理想输入结构接 口,数字滤波器不应在处理器端引起误差。这不是简单的任务, 必须在系统规格、响应时间、成本、设计工作量和资源等方面 做出权衡。

  *博客内容为网友个人发布,仅代表博主个人观点,如有侵权请联系工作人员删除。

相关产品: